活性炭孔隙分布对VOCs 吸附效果的分析
活性炭不同孔径的孔隙具有完全不同的吸附机理。其中微孔(<2nm)吸附基本符合微孔填充理论,即固体吸附剂表面存在位势场,邻近的VOCs 分子在场的作用下吸附在吸附剂表面;过渡孔(2nm 至100nm)吸附时除单分子层和多分子层吸附外,更主要的是通过毛细凝聚机理产生容积填充吸附;大孔(>100nm)吸附主要是多分子层吸附,符合BET 理论。此外,活性炭的孔径要和VOCs 的分子大小相匹配才能被有效吸附。在分子大小相匹配的情况下,活性炭孔径的分布越均匀、孔的形状越规则,则活性炭吸附效果越好。
通过活性炭对甲醛气体的吸附试验,证明吸附效果与活性炭孔结构和甲醛分子的表面官能团密切相关:活性炭的微孔比表面积越大,其表面能越高,吸附效果越明显;若活性炭过渡孔比表面积大,则吸附达到平衡的时间短。
对不同初始浓度VOCs吸附效果的分析 VOCs浓度对活性炭吸附效果有显著影响。一般情况下,VOCs初始浓度越大,其对活性炭的穿透时间和饱和时间越短。活性炭对高浓度VOCs 吸附的过程属于物理吸附,基本不用考虑化学吸附的影响,吸附效果主要取决于活性炭孔径的大小和数量;而对于低浓度VOCs 吸附的过程属于化学吸附,吸附效果主要取决于VOCs的化学性质。不同浓度的10% 穿透吸附剂的时间与吸附质初始浓度的对数存在线性关系,即吸附质初始浓度越大,其透过吸附剂的时间越短,吸附质的吸附效果越好。光氧催化
自然界常见的能量就是光能,而且这种能量是取之不尽用之不竭的,所以近些年来很多人将目光投到了光能催化有机废气上,利用光能进行催化不但没有额外的有毒物质加入,而且
还不会受到溶剂的影响,该法的应用前景非常广。
生物处理法
对于水中的有机物质常常采用生物降解的处理方法,对于有机废气同样可以采用生物处理的方式,微生物的生存需要有机物提供足够的能量,同时微生物还可以将有机废气中的氮硫有机物逐步分解为无机物质,该技术对环境的影响也非常小,应用的前景也十分广泛。
以上信息由专业从事工厂废气处理设备的隆亿达于2025/1/30 22:05:44发布
转载请注明来源:http://wuhan.mf1288.com/whlydhb-2839605196.html